ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Sunil K. Ghose, Leonard M. Goldman, Kim D. Auclair
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1501-1505
Inertial Fusion Reactor Studies | doi.org/10.13182/FST92-A29932
Articles are hosted by Taylor and Francis Online.
Balance-of-plant design aspects of two inertial fusion energy (IFE) reactor concepts - the laser-driven SOMBRERO and the heavy ion beam (HIB) driven OSIRIS - are being evaluated at a preconceptual level. The net electrical output of both plants is selected as 1,000 MWe (reference case). The economics of higher and lower capacities are also being evaluated. The heat transport system for both the reactors utilizes an intermediate loop with liquid lead as the intermediate coolant. An intermediate loop is chosen to reduce the potential of tritium migration to the environment. Both reactors utilize a supercritical pressure steam power conversion system with double reheat to achieve high conversion efficiency; a high efficiency is critical due to the capital-intensive nature of the plants and the low efficiencies of the laser and HIB drivers. The SOMBRERO plant facility is characterized by a large reactor building dictated by the laser optics configuration requirements. The plant also includes two moderate-size laser buildings. The OSIRIS plant facility is characterized by a moderate size reactor building, whose size is dictated by the remote maintenance requirements. In addition, a five-kilometer-long HIB tunnel is a unique feature of this plant. A remote maintenance approach is proposed for each of the reactors consistent with state-of-the-art methods and tools.