ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
I. N. Sviatoslavsky, M. E. Sawan, R. R. Peterson, G. L. Kulcinski, J. J. MacFarlane, L. J. Wittenberg, H. Y. Khater, E. A. Mogahed, S. C. Rutledge, Sunil Ghose, Robert Bourque
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1470-1474
Inertial Fusion Reactor Studies | doi.org/10.13182/FST92-A29928
Articles are hosted by Taylor and Francis Online.
The SOMBRERO inertial fusion reactor conceptual design study is of a 1000 MWe KrF laser driven near symmetric illumination system which utilizes a Li2O solid breeder moving bed in a blanket made entirely of low activation carbon/carbon composite material. The Li2O particles flow through the various parts of the blanket under gravity, then are transported through an intermediate heat exchanger and around the loop in a fluidized state by helium gas at 0.2 MPa. Liquid lead is used in the intermediate loop, going to a steam generator and a double reheat steam power cycle. There are 60 beams in the near symmetric illumination configuration. The laser energy is 3.4 MJ, the target gain 118 and the rep-rate 6.7 Hz. At the mid-plane, the blanket thickness is 1 m giving a tritium breeding ratio of 1.25 and an overall energy multiplication of 1.08. The first wall is at 6.5 m radius and is protected from x-rays and ions by 0.5 torr of Xe gas. Grazing incidence metallic mirrors are located at a distance of 30 m and dielectric final focusing mirrors at 50 m from the target Source neutrons are directed into neutron traps located in line with the grazing incidence mirrors. The final focusing mirrors which are out of line of sight of source neutron are subjected to low energy scattered neutrons only and can survive the 30 full power year reactor lifetime. The Li2O particles enter the chamber at 550°C and exit at an average temperature of 740°C, giving a power cycle efficiency of 47%. The gross power output is 1360 MW and for a 7% laser efficiency, the driver power is 325 MWe, with the remaining 35 MWe used for auxiliary equipment. The chamber and shield qualify for near surface burial as Class A waste while the Li2O breeder, as Class C waste.