ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Nermin A. Uckan
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1444-1448
International Thermonuclear Experimental Reactor | doi.org/10.13182/FST92-A29924
Articles are hosted by Taylor and Francis Online.
The ranges of confinement-relevant (dimensional and dimensionless) plasma parameters for major tokamaks (JET, JT-60U, TFTR, DIII-D, …) that are expected to contribute to the ITER Physics R&D in the 1990s have been analyzed to characterize confinement and plasma performance in ITER-like designs. We find that the largest tokamaks (JET, JT-60U) should be able to demonstrate H-mode operation (with ELMs, as in ITER) with nτETi values within an order of magnitude of those required in ITER and have relevant dimensionless plasma parameters (ρ/a, ν*, etc.) within a factor 2 of those in ITER. Extrapolations from dimensionally similar discharges in DIII-D and JET show high-Q/ignition operation in ITER-like plasmas at plasma currents (∼16 MA) well below the nominal (22-MA) design value. Another critical issue for achieving ignition-level plasma performance is the anomalous alpha particle effects, mainly the “toroidal Alfvén eigenmode” (TAE mode). The D-T experiments in TFTR and JET (and simulations using fast beam ions) should realize alpha particle (fast-ion) parameters roughly similar, in relation to TAE mode thresholds, to those projected for ITER. We judge that present-day tokamaks will provide a sufficient database (by the mid-1990s) on H-mode confinement (with ELMs) and possible anomalous alpha particle effects at relevant dimensionless parameters that are expected to be adequate for ITER purposes.