ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Nermin A. Uckan
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1444-1448
International Thermonuclear Experimental Reactor | doi.org/10.13182/FST92-A29924
Articles are hosted by Taylor and Francis Online.
The ranges of confinement-relevant (dimensional and dimensionless) plasma parameters for major tokamaks (JET, JT-60U, TFTR, DIII-D, …) that are expected to contribute to the ITER Physics R&D in the 1990s have been analyzed to characterize confinement and plasma performance in ITER-like designs. We find that the largest tokamaks (JET, JT-60U) should be able to demonstrate H-mode operation (with ELMs, as in ITER) with nτETi values within an order of magnitude of those required in ITER and have relevant dimensionless plasma parameters (ρ/a, ν*, etc.) within a factor 2 of those in ITER. Extrapolations from dimensionally similar discharges in DIII-D and JET show high-Q/ignition operation in ITER-like plasmas at plasma currents (∼16 MA) well below the nominal (22-MA) design value. Another critical issue for achieving ignition-level plasma performance is the anomalous alpha particle effects, mainly the “toroidal Alfvén eigenmode” (TAE mode). The D-T experiments in TFTR and JET (and simulations using fast beam ions) should realize alpha particle (fast-ion) parameters roughly similar, in relation to TAE mode thresholds, to those projected for ITER. We judge that present-day tokamaks will provide a sufficient database (by the mid-1990s) on H-mode confinement (with ELMs) and possible anomalous alpha particle effects at relevant dimensionless parameters that are expected to be adequate for ITER purposes.