ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
John C. Wesley, the U. S. ITER Home Teama
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1380-1388
International Thermonuclear Experimental Reactor | doi.org/10.13182/FST92-A29916
Articles are hosted by Taylor and Francis Online.
Design features and performance parameters for HARD — the high-aspect-ratio (A = 4) International Thermonuclear Engineering Reactor (ITER) design variant developed by the U. S. ITER Team — are presented. The HARD design makes it possible for ITER to achieve both the ignition/extended-burn and the steady-state/technology-testing performance goals set forth in the ITER Terms of Reference. These performance capabilities are obtained in a device that is otherwise similar in concept, size and cost to the low-aspect-ratio (A = 2.8) ITER design defined during the ITER Conceptual Design Activity (CDA). HARD is based on the same physics and engineering guidelines as the CDA design and achieves the same ignition performance (ignition margin evaluated against ITER-89P confinement scaling) with inductively-driven plasmas as ITER CDA, but with much greater margin for inductive sustainment of the pulse duration. With non-inductive current drive, HARD operates at lower plasma current and higher plasma density and bootstrap current fraction than ITER CDA, is less constrained by beta limit and divertor considerations, and has increased peaking of the neutron wall load at the test module location. These factors give HARD a much better potential than ITER CDA to achieve the steady-state operation and 1 MWa/m2 technology-testing fluence goals of the ITER objectives.