ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Donald L. Cook
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1358-1363
Magnetic and Inertial Fusion Experiment | doi.org/10.13182/FST92-A29912
Articles are hosted by Taylor and Francis Online.
Recent results from light ion fusion experiments on the Particle Beam Fusion Accelerator (PBFA II) are reported. Intense proton beams have been used to drive two different types of targets. In the thermal source targets, the proton beam heated a low-density foam. The specific power deposition of the proton beam in the foam exceeded 100 TW/gm. In the spherical hydrodynamic targets, the proton beam heated a thin-walled deuterium gas-filled target directly, producing a radial convergence of the deuterium of about 6. In order to increase the specific power deposition in the target, we are developing focused lithium beams. A preformed lithium ion source has been produced using a two-step laser evaporation and ionization approach. This preformed source provides the basis for experiments being planned to reduce the divergence of the lithium beam, a critical step in demonstrating the feasibility of light ion fusion.