ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
E. Michael Campbell, William J. Hogan, W. Howard Lowdermilk
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1344-1349
Magnetic and Inertial Fusion Experiment | doi.org/10.13182/FST92-A29910
Articles are hosted by Taylor and Francis Online.
The expeditious demonstration of ignition and gain in a laboratory Inertial Confinement Fusion (ICF) target has been identified by the National Academy of Sciences1 (NAS) and the Fusion Policy Advisory Committee2 (FPAC) as “the highest priority of the ICF Program.” Assuming that the near-term NAS-recommended preparatory milestones are met, they also concluded that the proposed Nova Upgrade would be the most expeditious way of achieving that goal. The Nova Upgrade would consist of an advanced, cost effective Nd:glass laser that would deliver 1–2 MJ of 0.35 µm light to a target chamber for indirect drive target experiments in which as much as 20 MJ of thermonuclear yield could result. After achieving ignition and gain, further experiments on the facility will allow development of optimized targets for Inertial Fusion Energy (IFE) reactors, simulation of some aspects of ion beam targets, and development of reactor first wall concepts. The targets developed on Nova Upgrade will potentially be suitable for use in an early, low-power engineering test facility (ETF) as the next step in IFE development.