ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
J.D. Kilkenny, H.A. Baldis, S.H. Batha, M.D. Cable, E.M. Campbell, R.C. Cook, C.B. Darrow, T. Dittrich, R.J. Ellis, S.G. Glendinning, S.W. Haan, B.A. Hammel, S.P. Hatchett, D.R. Kania, R.L. Kauffman, H.N. Komblum, O.L. Landen, S.M. Lane, R.A. Lerche, J.D. Lindl, K. Levendahl, D.S. Montgomery, J. Moody, T. Murphy, D.H. Munro, D.W. Phillion, B.A. Remington, D.B. Ress, L.J. Suter, G.L. Tietbohl, A.R. Thiessen, R.E. Turner, R.J. Wallace, J.D. Wiedwald, F. Ze
Fusion Science and Technology | Volume 21 | Number 3 | May 1992 | Pages 1340-1343
Magnetic and Inertial Fusion Experiment | doi.org/10.13182/FST92-A29909
Articles are hosted by Taylor and Francis Online.
The Inertial Confinement Fusion (ICF) Program and the Lawrence Livermore National Laboratory has made substantial progress in understanding the details of the radiation drive and the dynamics of capsules imploded by the Nova laser. A detailed understanding, validated by Nova experiments of the crucial physics for implosions is necessary before a new facility is started. A National Academy of Science Review Committee on ICF1 has recently endorsed a 12 point technical contract for the Nova program. Recent experiments have achieved a substantial number of these goals. A decrease in the level of plasma instabilities has been demonstrated by the use of phase plates. Neutron measurements have been used to demonstrate high densities in well understood implosions. A detailed understanding of the Rayleigh-Taylor instability at the ablation front of x-ray driven planar foil targets with large hydrodynamic growth factors has been proven. X-ray spectroscopy has been used to demonstrate a high fuel density and an improvement in the compression ratio of targets when a shaped pulse is used to keep a pusher on a low rho-r trajectory.