ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Arthur Nobile, Heidi Reichert, Roger T. Janezic, David R. Harding, Lance D. Lund, Walter T. Shmayda
Fusion Science and Technology | Volume 43 | Number 4 | June 2003 | Pages 522-539
Technical Paper | doi.org/10.13182/FST03-A299
Articles are hosted by Taylor and Francis Online.
Preparations are currently underway at the OMEGA laser at the University of Rochester Laboratory for Laser Energetics (UR/LLE) to conduct direct drive laser implosion campaigns with inertial confinement fusion targets containing deuterium-tritium (DT) cryogenic ice layers. The OMEGA Cryogenic Target Handling System will fill plastic targets with high-pressure DT (150 MPa) at 300 to 500 K, cool them down to cryogenic temperature (<25 K), form the DT ice layer, and transport the targets to the OMEGA laser target chamber. Targets will then be shot with the 60-beam 30-kJ OMEGA laser. A tritium removal system has been designed to remove tritium from effluents associated with operation of the target chamber and its associated diagnostic antechambers, vacuum pumping systems, and target insertion systems. The design of the target chamber tritium removal system (TCTRS) is based on catalytic oxidation of DT and tritiated methane to tritiated water (DTO), followed by immobilization of DTO on molecular sieves. The design of the TCTRS presented a challenge due to the low tritium release limits dictated by the tritium license at UR/LLE. Aspen Plus, a commercial software package intended for the simulation and design of chemical processing systems operating at steady state, was used to simulate and design the TCTRS. A second commercial software package, Aspen ADSIM, was used to simulate and design the TCTRS molecular sieve beds, which operate at unsteady state. In this paper, we describe the design of the TCTRS and the benefits that were realized by use of the Aspen Plus and Aspen ADSIM software packages.