ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Arthur Nobile, Heidi Reichert, Roger T. Janezic, David R. Harding, Lance D. Lund, Walter T. Shmayda
Fusion Science and Technology | Volume 43 | Number 4 | June 2003 | Pages 522-539
Technical Paper | doi.org/10.13182/FST03-A299
Articles are hosted by Taylor and Francis Online.
Preparations are currently underway at the OMEGA laser at the University of Rochester Laboratory for Laser Energetics (UR/LLE) to conduct direct drive laser implosion campaigns with inertial confinement fusion targets containing deuterium-tritium (DT) cryogenic ice layers. The OMEGA Cryogenic Target Handling System will fill plastic targets with high-pressure DT (150 MPa) at 300 to 500 K, cool them down to cryogenic temperature (<25 K), form the DT ice layer, and transport the targets to the OMEGA laser target chamber. Targets will then be shot with the 60-beam 30-kJ OMEGA laser. A tritium removal system has been designed to remove tritium from effluents associated with operation of the target chamber and its associated diagnostic antechambers, vacuum pumping systems, and target insertion systems. The design of the target chamber tritium removal system (TCTRS) is based on catalytic oxidation of DT and tritiated methane to tritiated water (DTO), followed by immobilization of DTO on molecular sieves. The design of the TCTRS presented a challenge due to the low tritium release limits dictated by the tritium license at UR/LLE. Aspen Plus, a commercial software package intended for the simulation and design of chemical processing systems operating at steady state, was used to simulate and design the TCTRS. A second commercial software package, Aspen ADSIM, was used to simulate and design the TCTRS molecular sieve beds, which operate at unsteady state. In this paper, we describe the design of the TCTRS and the benefits that were realized by use of the Aspen Plus and Aspen ADSIM software packages.