ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Arthur Nobile, Heidi Reichert, Roger T. Janezic, David R. Harding, Lance D. Lund, Walter T. Shmayda
Fusion Science and Technology | Volume 43 | Number 4 | June 2003 | Pages 522-539
Technical Paper | doi.org/10.13182/FST03-A299
Articles are hosted by Taylor and Francis Online.
Preparations are currently underway at the OMEGA laser at the University of Rochester Laboratory for Laser Energetics (UR/LLE) to conduct direct drive laser implosion campaigns with inertial confinement fusion targets containing deuterium-tritium (DT) cryogenic ice layers. The OMEGA Cryogenic Target Handling System will fill plastic targets with high-pressure DT (150 MPa) at 300 to 500 K, cool them down to cryogenic temperature (<25 K), form the DT ice layer, and transport the targets to the OMEGA laser target chamber. Targets will then be shot with the 60-beam 30-kJ OMEGA laser. A tritium removal system has been designed to remove tritium from effluents associated with operation of the target chamber and its associated diagnostic antechambers, vacuum pumping systems, and target insertion systems. The design of the target chamber tritium removal system (TCTRS) is based on catalytic oxidation of DT and tritiated methane to tritiated water (DTO), followed by immobilization of DTO on molecular sieves. The design of the TCTRS presented a challenge due to the low tritium release limits dictated by the tritium license at UR/LLE. Aspen Plus, a commercial software package intended for the simulation and design of chemical processing systems operating at steady state, was used to simulate and design the TCTRS. A second commercial software package, Aspen ADSIM, was used to simulate and design the TCTRS molecular sieve beds, which operate at unsteady state. In this paper, we describe the design of the TCTRS and the benefits that were realized by use of the Aspen Plus and Aspen ADSIM software packages.