ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Glen R. Longhurst, Andy G. Heics, Walter T. Shmayda, Richard L. Rossmassler
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 1017-1023
Material; Storage and Processing | doi.org/10.13182/FST92-A29885
Articles are hosted by Taylor and Francis Online.
To help resolve unknowns regarding consequences of air-ingress accidents in uranium beds, a series of experiments was conducted at Ontario Hydro Research Division with the participation of Princeton Plasma Physics Laboratory and the Idaho National Engineering Laboratory. These experiments involved exposure of uranium beds of various sizes to air, oxygen in helium, argon and Nitrogen. Beds of 5-gram to 3-kg uranium capacity were tested. Starting temperatures ranged from 294 K to 824 K. Results of these experiments showed that in every test the reaction was restrained with modest temperature excursions. Either surface films or gas blanketing may be responsible for quenching the reaction with air. In these tests the reaction appears to be stopped by a diffusive barrier film of reaction products that grows on the surface of the uranium grains. The only tritium emissions appeared to be due to thermal oscillation-driven gas expansion. Our conclusion is that the hazard associated with an air-ingress accident involving a uranium bed is smaller than we thought initially. With proper bed design, the energy release will be modest and should not result in damage to the bed structure. Tritium release can be minimized or prevented by keeping the bed only partially loaded.