ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
S. Konishi, T. Hayashi, M. Inoue, K. Okuno, Y. Naruse, H. Sato, H. Fukui, K. Nemoto, M. Kurokawa, J.W. Barnes, J.L. Anderson
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 999-1004
Material; Storage and Processing | doi.org/10.13182/FST92-A29882
Articles are hosted by Taylor and Francis Online.
The Japan Atomic Energy Research Institute (JAERI) has developed a full scale Fuel Cleanup System (JFCU) that processes a simulated plasma exhaust at the Tritium Systems Test Assembly (TSTA) in the Los Alamos National Laboratory (LANL). The JFCU was designed by the Tritium Process Laboratory (TPL) of the JAERI based on the component studies performed under previous TSTA-TPL collaboration and the pilot scale experiment using grams of tritium at the TPL. The JFCU accepts a simulated fusion reactor exhaust, a mixture of hydrogen isotopes with an impurity level of up to 15% at a throughput of 4.2x10−3 mol/s continuously and produces pure hydrogen isotopes while exhausting tritium-free waste gas. Some newly developed components, such as the Ceramic Electrolysis Cell and the large Zirconium-Cobalt bed, required special attention during fabrication and assembly. The apparatus was fabricated by Mitsubishi Heavy Industries (MHI) and installed at the TSTA in early 1990. Interfacing with the existing TSTA facility also required careful interaction between TSTA and JAERI.