ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
D.K. Murdoch, F. Olezza, J-L. Mazel
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 966-970
Material; Storage and Processing | doi.org/10.13182/FST92-A29876
Articles are hosted by Taylor and Francis Online.
Large diameter (up to approx. 2 m) tritium compatible vacuum valves will be required for a broad range of applications around the NET/ITER torus. This paper focuses on the development steps and current design status of the valves located immediately upstream of the torus primary vacuum pumps. The number (24) and size (1500 mm nominal diameter) of these valves has been established in studies of the required particle exhaust rate from the torus and the conductance of the divertor duct and manifold system. The three principal functions are to isolate the torus during maintenance, to prevent back-streaming during regeneration of compound cryopumps, and to provide fast closure following accident or upset conditions. The design input parameters are tabulated in the paper. Initial engineering studies indicate that a gate valve is the preferred configuration to achieve low conductance losses and a design compatible with the confined space available. In order to meet the specified internal leak tightness (10−4 Pa.m3. s−1) in the potentially dust-laden environment, an elastomeric sealing material is recommended. This will keep the sealing forces and therefore the overall weight and dimensions of the valve within acceptable limits. Because of the arduous operating environment (dust, tritium, neutron activation and high operating frequency) provision will be made for change-out of the valve seals as a routine maintenance activity. A valve design in which the bonnet, stem and valve disc (along with the elastomer seal rings) can be removed from the valve body by a remotely operated manipulator and transferred to a centralized hot cell location for refurbishment has therefore been specified. Development of the valve includes both engineering studies and laboratory test work, and these are described in the paper. A prototype valve will be available in 1995–96 for incorporation into an integrated vacuum system test loop.