ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
K. Hirata, A. Matsumoto, T. Yamanishi, K. Okuno, Y. Naruse, I. Yamamoto
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 937-941
Material; Storage and Processing | doi.org/10.13182/FST92-A29871
Articles are hosted by Taylor and Francis Online.
Experimental study for separation of hydrogen isotopes has been performed by using a ‘cryogenic-wall’ thermal diffusion column refrigerated by liquid nitrogen. The column separated H-D system at total reflux and total recycle operational modes. The dependences of the separation factor on the column pressure and hot wire temperature were examined for the total reflux experiments. The optimum pressure observed was 30 kPa at 1273 K. The maximum separation factor at 473 K was larger than that at 1273 K since HD molecules were not produced on the hot wire by the isotope exchange reaction. The separation factor was exponentially proportional to the hot wire temperature. In the total recycle experiments, the separation factor was measured under a variety of flow rates, positions and compositions of the feed stream. The increase in the feed flow rate deteriorated the separation factor appreciably. The position and composition of the feed stream were also major parameters affecting the separation factor.