ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Busigin, S.K. Sood, O.K. Kveton
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 915-920
Material; Storage and Processing | doi.org/10.13182/FST92-A29867
Articles are hosted by Taylor and Francis Online.
A dynamic simulation has been developed for the ITER fuel cycle including vacuum pumping, fuel processing, fueling, pellet injection, tritium breeding blanket detritiation, fuel purification and isotope separation. The dynamic simulation model is used for calculating the unsteady-state flow of materials through the various fuel processing systems. Since many of the systems have substantial hold-up times, and the ITER reactor burn and dwell cycle is periodic, a steady state model cannot provide a complete picture of system behavior. The dynamic model allows assessment of flowrates and minimum and maximum inventories under a wide range of dynamic conditions. This information is necessary for proper specification of system design requirements.