ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
C. R. Walthers, E. M. Jenkins, C. Mayaux, W. Obert, Yuji Naruse
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 883-885
Material; Storage and Processing | doi.org/10.13182/FST92-A29861
Articles are hosted by Taylor and Francis Online.
The possibility that tritium might exchange with water trapped in aluminum anodize cryopanels in JET prompted a test program at the Tritium Systems Test Assembly, TSTA, Los Alamos, New Mexico. JET furnished two test pieces of cryopanel which were exposed to tritium at approximately liquid nitrogen temperature and 25 torr pressure for nearly two weeks. One specimen was removed and the retained tritium was measured. The second specimen was subjected to several increasing temperature vacuum bakeouts and the effectiveness of the bakeouts were inferred from the pressure history of the chamber. When the retained tritium in the second specimen was measured, it was found that nearly 95% of the tritium, as measured in the first specimen, had been removed during the vacuum bakeouts. If the tritium retained in the cryopanel without bakeout were scaled to JET conditions according to a linear pressure-time relationship, the tritium expected to become trapped in the JET cryopanels would be approximately 0.6 gram. Testing is currently underway at TSTA which will determine the tritium retention to be expected under more realistic JET operating conditions and which will assess the effectiveness of various bake or purge schemes in removing the trapped tritium.