ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
W. A. Swansiger
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 861-866
Material; Storage and Processing | doi.org/10.13182/FST92-A29857
Articles are hosted by Taylor and Francis Online.
Tritium permeabilities were determined at room temperature, 1.0 MPa (150 psia) tritium for three 23.4 cm diameter EPDM (ethylene-propylene-diene monomer) O-rings using a full-scale mock-up of the AL-SX shipping container seal geometry. The AL-SX container is being developed by Sandia National Laboratories for shipping tritium reservoirs. To determine the tritium permeation rate as a function of temperature, a 50.8 mm diameter EPDM O-ring was tested from room temperature to 150° C at a pressure of 1.0 MPa. Additional permeation measurements were made under the following test conditions: (1) deuterium and helium-4 at room temperature and a pressure of 1.0 MPa using the full-scale AL-SX fixture, (2) tritium from 0.1 MPa to 1.0 MPa at 142° C using the 50.8 mm fixture, and (3) deuterium from room temperature to 150° C at a pressure of 1.0 MPa using the 50.8 mm fixture. Multiple permeation runs using the three full-scale O-rings showed the average room temperature, 1.0 MPa steady state tritium permeation rate to be about 1 × 10−2 Pa-liter/sec (7.6 × 10−5 torr-liter/sec or 1 × 10−4 std cc/sec), well within the allowable limit of 7.1 × 10−2 Pa-liter/sec for tritium release from the AL-SX container. Based on the temperature dependence derived from tests on the 50.8 mm fixture, the permeation rate through the large O-ring at 1.0 MPa tritium, 150° C would be about 60% of the allowable limit. The tritium permeability was found to vary linearly with pressure within the range explored.