ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
W. A. Swansiger
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 861-866
Material; Storage and Processing | doi.org/10.13182/FST92-A29857
Articles are hosted by Taylor and Francis Online.
Tritium permeabilities were determined at room temperature, 1.0 MPa (150 psia) tritium for three 23.4 cm diameter EPDM (ethylene-propylene-diene monomer) O-rings using a full-scale mock-up of the AL-SX shipping container seal geometry. The AL-SX container is being developed by Sandia National Laboratories for shipping tritium reservoirs. To determine the tritium permeation rate as a function of temperature, a 50.8 mm diameter EPDM O-ring was tested from room temperature to 150° C at a pressure of 1.0 MPa. Additional permeation measurements were made under the following test conditions: (1) deuterium and helium-4 at room temperature and a pressure of 1.0 MPa using the full-scale AL-SX fixture, (2) tritium from 0.1 MPa to 1.0 MPa at 142° C using the 50.8 mm fixture, and (3) deuterium from room temperature to 150° C at a pressure of 1.0 MPa using the 50.8 mm fixture. Multiple permeation runs using the three full-scale O-rings showed the average room temperature, 1.0 MPa steady state tritium permeation rate to be about 1 × 10−2 Pa-liter/sec (7.6 × 10−5 torr-liter/sec or 1 × 10−4 std cc/sec), well within the allowable limit of 7.1 × 10−2 Pa-liter/sec for tritium release from the AL-SX container. Based on the temperature dependence derived from tests on the 50.8 mm fixture, the permeation rate through the large O-ring at 1.0 MPa tritium, 150° C would be about 60% of the allowable limit. The tritium permeability was found to vary linearly with pressure within the range explored.