ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S. L. Robinson, N. Y. C. Yang
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 856-860
Material; Storage and Processing | doi.org/10.13182/FST92-A29856
Articles are hosted by Taylor and Francis Online.
The effects of internal tritium and helium on the tensile properties of two austenitic stainless steels and an iron-based superalloy have been studied. The materials tested were, forged 21Cr-6Ni-9Mn and 304L (tested in the annealed condition and two forged conditions), and a modified A-286 alloy. The accumulation of 3He from the radioactive decay of tritium caused an increase in the yield strength and a continuous decrease in the ductility in almost all materials tested. Increased 3He concentrations also caused a change in fracture mode from ductile rupture to predominantly intergranular fracture. The property changes resulted from 3He bubble-induced strengthening, which produced a change in deformation mode from long-range dislocation activity to deformation twinning. In the deformation-twinning mode, the 3He-accelerated fracture initiated at the intersections of deformation twins with grain boundaries. High-strength forged 304L was most resistant to 3He effects, owing to the redistribution of 3He on dislocations.