ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. L. Robinson, N. Y. C. Yang
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 856-860
Material; Storage and Processing | doi.org/10.13182/FST92-A29856
Articles are hosted by Taylor and Francis Online.
The effects of internal tritium and helium on the tensile properties of two austenitic stainless steels and an iron-based superalloy have been studied. The materials tested were, forged 21Cr-6Ni-9Mn and 304L (tested in the annealed condition and two forged conditions), and a modified A-286 alloy. The accumulation of 3He from the radioactive decay of tritium caused an increase in the yield strength and a continuous decrease in the ductility in almost all materials tested. Increased 3He concentrations also caused a change in fracture mode from ductile rupture to predominantly intergranular fracture. The property changes resulted from 3He bubble-induced strengthening, which produced a change in deformation mode from long-range dislocation activity to deformation twinning. In the deformation-twinning mode, the 3He-accelerated fracture initiated at the intersections of deformation twins with grain boundaries. High-strength forged 304L was most resistant to 3He effects, owing to the redistribution of 3He on dislocations.