ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Takumi Hayashi, Junzou Amano, Kenji Okuno, Yuji Naruse
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 845-849
Material; Storage and Processing | doi.org/10.13182/FST92-A29854
Articles are hosted by Taylor and Francis Online.
In order to discuss the long-term reliability and safety of zirconium-cobalt (ZrCo) alloy for tritium (T) use, the release behavior of decay helium (3He) from ZrCo tritide has been investigated for one and a half years with a radio-gaschromatograph. The results show that the release fractions of the total decay 3He in ZrCo tritide are less than 3 % and has been almost constant for 18 months under the following conditions : the operating temperatures = 293 ∼ 523 K, the atom ratios (T/ZrCo) = 0.3 ∼ 1.4, and the number of hydrogenation-dehydrogenation cycles before tritiation = 1 ∼ 10. Moreover, residual decay 3He was not released even if ZrCo was heated to 873 K, though most of the tritium was released. It became clear that the decay 3He was quite immovable in ZrCo tritide under these experimental conditions.