ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
H. Miyake, M. Matsuyama, K. Watanabe, D. F. Cowgill
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 812-817
Material; Storage and Processing | doi.org/10.13182/FST92-A29848
Articles are hosted by Taylor and Francis Online.
We developed a simple system using tritium tracer and thermal desorption techniques to measure the tritium adsorption and/or absorption on/in a material having typical surface conditions: namely, not cleaned surface. The tritium counting devices used were a 2π counter and conventional proportional counter. With this system, the amounts of ad/absorption could be measured without exposing the samples to air after exposing them to tritium gas. The overall efficiency (F) of the 2π counter was described as F = exp(−2.64h), where h is the distance from the sample to the detector. Ad/absorption measurements were carried out for several materials used for fabricating conventional vacuum systems. The results were, in the order of decreasing amounts of ad/absorption, as [fiber reinforced plastics(FRP)] > [nickel(Ni), molybdenum disulfide(MoS2)] > [stainless steel (SS304), iron(Fe), aluminum alloy(A2219)] > [boron nitride(h-BN), silicon carbide(SiC), SS304 passivated by anodic oxidation layers(ASS) and that by boron nitride segregation layers(BSS)]. The relative amounts were about 100 for Ni and 0.1 for ASS and BSS, being normalized to Fe = 1. It was found that the passivation of SS304 with anodic oxidation layers and/or BN segregation layers should be quite valid to decresase the tritium inventory on/in the material walls of tritium handling systems. In addition, it was estimated that this system would be capable of detecting the tritium adsorption of the order of 10−6 in the surface coverage.