ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Nobile, J. R. Wermer, R. T. Walters
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 769-774
Material Properties | doi.org/10.13182/FST92-A29841
Articles are hosted by Taylor and Francis Online.
Palladium and LaNi5-xAlx (x=0.30, 0.75, 0.85), which form reversible hydrides, are used for tritium processing and storage in the Savannah River Site (SRS) tritium facilities. As part of a program to develop technology based on the use of reversible metal hydrides for tritium processing and storage, the effects of aging on the thermodynamic behavior of palladium and LaNi4.25Al0.75 tritides are under investigation. During aging, the 3He tritium decay product remains in the tritide lattice and changes the thermodynamics of the tritium-metal tritide system. Aging effects in 755-day-aged palladium and 1423-day-aged LaNi4.25Al0.75 tritides will be reported. Changes in the thermodynamics were determined by measuring tritium desorption isotherms on aging samples. In palladium, aging decreases the desorption isotherm plateau pressure and changes the a-phase portion of the isotherm. Aging-induced changes in desorption isotherms are more drastic in LaNi4.25Al0.75. Among the changes noted are: (1) decreased isotherm plateau pressure, (2) increased isotherm plateau slope, and (3) appearance of deep-trapped tritium, removable only by exchange with protium or deuterium. Various processes occurring in the tritide lattice which might be responsible for the observed aging effects in palladium and LaNi4.25Al0.75 tritides will be discussed.