ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Michio Watanabe, Chiaki Takeda, Shizuo Tada, Hiroshi Anada, Susumu Ikeno, Kan Ashida, Kuniaki Watanabe
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 763-768
Material Properties | doi.org/10.13182/FST92-A29840
Articles are hosted by Taylor and Francis Online.
Alloying effects on absorption and desorption kinetics of deuterium for Zr-Al alloys were studied with mass analyzed thermal desorption spectroscopy using a conventional high vacuum system. It was found that the absorption rate of deuterium was proportional to the 1/2 power of deuterium gas pressure. On the other hand, the desorption process obeyed the second order kinetics with respect to the amount of absorbed deuterium. The temperature dependence of the rate constants revealed that the activation energies for both the absorption and desorption processes were lowered by the increase in the Al content in the alloys. Through potential diagrams for the absorption and desorption of deuterium, it was also found that the heat of deuterium (hydrogen) solution decreased with increasing Al composition. In addition, the x-ray diffraction spectroscopy showed the formation of a Zr4Al3 phase in the Zr3>Al2 sample owing to repeated absorption and desorption cycles. The results suggest that the electronic factors, for example, work function, electron density, d-band character and so on, play an important role for the alloying effects rather than crystallographic structures. In addition, it becomes evident that the absorption/desorption properties for such alloys are limited not only by the side reactions with impurity gases but also changes in their crystallographic nature owing to interactions with hydrogen and/or heat cycles.