ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
E. R. Gilbert, R. P. Allen, D. L. Baldwin, R. D. Bell, J. L. Brimhall, R. G. Clemmer, S. C. Marschman, M. A. McKinnon, R. E. Page, H. G. Powers, S. G. Chalk
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 739-744
Material Properties | doi.org/10.13182/FST92-A29836
Articles are hosted by Taylor and Francis Online.
To verify the performance of permeation-resistant cladding for tritium targets designed for a New Production Reactor Light-Water Reactor, a tritium test facility was designed, developed, fabricated, and certified. Testing is ongoing to verify the performance of reference-designed targets. Accurate measurements were taken of tritium permeating from barrier-coated cladding specimens immersed in high-temperature autoclaves configured to simulate reactor coolant conditions. The tritium test pressure is controlled by heating a zirconium-alloy getter, previously charged with tritium, to a temperature that corresponds to a specified test pressure. The apparatus for testing deuterium permeation was developed to calibrate nondestructive testing procedures for evaluating barrier quality and to screen defective industrial cladding. These permeation testing facilities perform parametric tests to evaluate the sensitivity of permeation to temperature, time, pressure, fabrication variables, barrier disparities, corrosion, and other factors. The experimental activities characterize the performance and material properties of target rod components as well as validate new nondestructive examination methods that measure target rod quality. The target rod components are 1) barrier-coated stainless steel cladding, 2) lithium aluminate pellets, 3) nickel-plated Zircaloy-4 getters, and 4) zirconium liners. In addition, data generated from statistical testing provide increased confidence in current analytical models that predict target rod performance during both steady state and calculated transient conditions. The test results indicate that the tritium release from a full core of NPR-LWR targets will satisfy design requirements for release of no more than 20,000 Ci of tritium to the reactor coolant, even with four failed target rods that release up to 50% of their inventory.