ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
W. H. Hedley, F. S. Adams, G. E. Gibbs, D. R. Ming, K. J. Myers, J. E. Wells
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 678-682
Safety and Measurement (Monitoring) | doi.org/10.13182/FST92-A29825
Articles are hosted by Taylor and Francis Online.
A probabilistic risk assessment was made on the TERF process in order to establish its expected degree of reliability and to locate places in the system which could be improved by revision of the equipment or the operating procedures. The equipment design of the TERF was evaluated using a fault tree study. The probability of human failures was then evaluated by adding their probabilistic effects to the fault tree and then reevaluating it. It was found that 1) the TERF system is expected to be very reliable, with an annual expected downtime of only 2.35 hours, 2) the expected downtime comes almost entirely from process equipment failure rather than human errors, and 3) that certain equipment changes could be made that increased the system reliability. These equipment changes included 1) making provision for blocking off certain automatic control valves with more reliable manual valves to facilitate their repair and 2) making the two sources of power to the TERF totally independent of each other.