ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
K.R. O'Kula, R.L. Olson, D. M. Hamby
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 659-667
Safety and Measurement (Monitoring) | doi.org/10.13182/FST92-A29822
Articles are hosted by Taylor and Francis Online.
A full-scale PRA of a DOE production reactor has been completed that considers full release of tritium as part of the severe accident source term. Two classes of postulated reactor accidents, a loss-of-moderator pumping accident and a loss-of-coolant accident, are used to bound the expected dose consequence from liquid pathway release. Population doses from the radiological release associated with the two accidents are compared for aqueous discharge and atmospheric release modes. The expectation values of the distribution of possible values for the societal effective dose equivalent to the general public, given a tritium release to the atmosphere, is 2.8 person-Sv/PBq (9.9 × 10−3 person-rem/Ci). The general public drinking water dose to downstream water consumers is 6.5 × 10−2 person-Sv/PBq (2.4 × 10−4 person-rem/Ci) for aqueous releases to the surface streams eventually reaching the Savannah River. Negligible doses are calculated for freshwater fish and saltwater invertebrate consumption, irrigation, and recreational use of the river, given that an aqueous release is assumed to occur. Relative to the balance of fission products released in a hypothetical severe accident, the tritium-related dose is small. This study suggests that application of regional models (1610 km radius) will indicate larger dose consequences from short-term tritium releases to the atmosphere than from comparable tritium source terms to water pathways. However, the water pathways assessment is clearly site-specific, and the overall aqueous dose will be dependent on downstream receptor populations and uses of the river.