ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
P.A. Davis, R.J. Cornett, R.W.D. Killey, M.J. Wood, W.J.G. Workman
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 651-658
Safety and Measurement (Monitoring) | doi.org/10.13182/FST92-A29821
Articles are hosted by Taylor and Francis Online.
An accidental release of HTO to the atmosphere from a reactor at the Chalk River Laboratories was assessed in a timely and efficient manner using a combination of predictive modelling and environmental sampling. A simple Gaussian plume model performed well in predicting the concentration of HTO in air. Doses to workers and to members of the public were well below acceptable levels at all times during the incident. The release was turned to advantage to study tritium behaviour in the winter environment. HTO concentrations were measured in air, falling snow, vegetation and the snowpack at many locations during and after the release. The rate of HTO deposition to snow is greatly enhanced when snow is falling. The rate of new snow accumulation exceeded the rate of HTO diffusion in snow, so that the snowpack retained essentially all of the tritium deposited to it until spring melt occurred. Snow core data were therefore used as a surrogate for air concentrations to study the dispersion of the airborne plume, which was strongly affected by the topography of the Ottawa River Valley.