ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
William H. Hedley, Paul H. Lamberger, C. Mark Colvin, Gary E. Gibbs, Frank S. Adams, Rodney P. Bowser, Thomas J. Rissner, Fredric E. Morgan, Mark J. Schmidt, Jeffrey F. Van Patten, Ronald E. Wieneke
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 612-615
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29815
Articles are hosted by Taylor and Francis Online.
The TERF and the ERS tritium capture systems are alike in that they both use the “oxidize and dry” principle to remove tritium from gases, but they differ significantly in engineering details. The newer TERF system benefited in many ways from experience with the ERS. The TERF is expected to: 1) operate at a higher pressure, leading to greater throughput, 2) have redesigned reactors with better efficiency to process tritiated organic compounds, 3) have better energy conservation, 4) use an advanced process control system to provide more versatility in operation of the system, to account for the amount of tritium in the system at all times, and to more completely log operating results, 5) utilize more corrosion resistant materials to minimize maintenance, and 6) provide double containment of all pressurized tritium containing equipment to reduce tritium losses and increase operating safety.