ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Thomas J. Kissner, Ronald E. Wieneke
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 583-587
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29810
Articles are hosted by Taylor and Francis Online.
The Tritium Emissions Reduction Facility (TERF) is an automated process that continuously removes tritium from process gases before they are discharged to the atmosphere. Key control parameters include: temperature, pressure, flow, oxygen content, total combustibles, moisture concentrations and tritium concentrations. The procurement of an industrial, microprocessor-based Distributed Process Control System was justified for TERF due to the critical nature and complexity of the system. A detailed performance specification was prepared and submitted to industrial companies who had demonstrated past success in the field of process control and instrumentation. The contract was awarded to the Foxboro Company, of Foxboro, Ma., who developed the new Intelligent Automation (I/A) Distributed Process Control System. A primary goal of the design team was that the control system increase TERF reliability and availability by automatically controlling system operation and by assisting the operator in the diagnosis of problems, preventative maintenance, alarming, report generation, and long term storage of data. The comprehensive continuous monitoring of the TERF process provided by the Foxboro I/A Distributed System is expected to: (1) optimize the system operating parameters and control the process better than was previously possible, (2) provide more alerts and alarms to aid operators in diagnosing and responding to problems, and (3) record and organize process data more effectively than before.