ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Thomas J. Kissner, Ronald E. Wieneke
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 583-587
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29810
Articles are hosted by Taylor and Francis Online.
The Tritium Emissions Reduction Facility (TERF) is an automated process that continuously removes tritium from process gases before they are discharged to the atmosphere. Key control parameters include: temperature, pressure, flow, oxygen content, total combustibles, moisture concentrations and tritium concentrations. The procurement of an industrial, microprocessor-based Distributed Process Control System was justified for TERF due to the critical nature and complexity of the system. A detailed performance specification was prepared and submitted to industrial companies who had demonstrated past success in the field of process control and instrumentation. The contract was awarded to the Foxboro Company, of Foxboro, Ma., who developed the new Intelligent Automation (I/A) Distributed Process Control System. A primary goal of the design team was that the control system increase TERF reliability and availability by automatically controlling system operation and by assisting the operator in the diagnosis of problems, preventative maintenance, alarming, report generation, and long term storage of data. The comprehensive continuous monitoring of the TERF process provided by the Foxboro I/A Distributed System is expected to: (1) optimize the system operating parameters and control the process better than was previously possible, (2) provide more alerts and alarms to aid operators in diagnosing and responding to problems, and (3) record and organize process data more effectively than before.