ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
H.-W. Bartels
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 544-549
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29803
Articles are hosted by Taylor and Francis Online.
A significant fraction of the tritium inventory of a fusion plant will be in the elemental form HT. A simple model is proposed to calculate early doses following an HT release. The dose is not dominated by the primary HT plume but by deposition of HT into the soil, subsequent oxidation to HTO by microorganisms and the following reemission of HTO. The difficulty of calculating HTO concentrations from a large area source is solved by defining a reemission velocity. All data available from the large scale release experiments in France (1986) and Canada (1987) are used to fit this parameter. With typical worst case conditions one gets an early dose of 0.04 Sv/kg-T as HT at 1000 m distance from the source, building wake effects included. This model can also be used to calculate HTO-release doses and predicts 0.6 Sv/kg-T as HTO for the same worst case condition. About 20 % of this dose is caused by reemission of HTO deposited into the soil. The accuracy of the model is estimated to be a factor of 2 – 2.5 up and down.