ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M.J. Wood, W.J.G. Workman
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 529-535
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29801
Articles are hosted by Taylor and Francis Online.
A field trial in which outdoor air was sampled with an active reference sampler and several passive HTO-in-air samplers simultaneously was carried out at Chalk River Laboratories. Both passive and active samplers were changed on an approximately monthly schedule from 1990 September 2 to 1991 April 18. Average temperatures for the sampling intervals ranged from −8.6°C to +15.5°C and HTO-in-air concentrations measured by the active sampler were typically 10 Bq/m3. A total of 129 passive HTO-in-air sampler measurements were made during the seven sampling intervals. The passive samplers used for the field trial were of the type described by Stephenson,1 prepared with either tritium-free water or a solution of 50% tritium-free water and 50% ethylene glycol. As expected, the samplers prepared with the water-glycol solution performed more consistently than the samplers prepared with water only. Good agreement between passive and active sampler measurements was observed throughout the field trial. Passive samplers were found to be suitable for outdoor tritium-in-air sampling with a significant reduction in effort over traditional active samplers. However, passive samplers can not obtain the sensitivity of conventional active HTO-in-air samplers.