ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kwang-Il You, Deok Kyo Lee
Fusion Science and Technology | Volume 43 | Number 4 | June 2003 | Pages 514-521
Technical Paper | doi.org/10.13182/FST03-A298
Articles are hosted by Taylor and Francis Online.
A simple one-dimensional analytic formulation is developed for approximate determination of the preload force that must be applied by tie-rods and/or tie-plates for a multimodule central solenoid coil assembly in tokamak devices. The primary purpose of the preload is to ensure that vertical tensile stress does not develop between any two adjacent module coils within the assembly. The absence of the tensile force is a minimal requirement needed to prevent lateral movements of the coils, when friction is the sole means available. An excessive preload, on the other hand, can damage insulation and conductor jackets. The analysis is based on a model system in which the vertical motion of the coil winding is described through representation of the coil conductors and tie-rods/-plates with linear springs. The coupled spring system is represented by a system of simultaneous linear equations, which is solved analytically to obtain the compression force at each spring in terms of the applied preload, electromagnetic forces on the springs, and spring constants. Although this procedure lacks the rigor of complex two- or three-dimensional analyses, it is expected to be able to play some useful role.