ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
K. J. Hofstetter, H. T. Wilson
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 446-451
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29786
Articles are hosted by Taylor and Francis Online.
The development of a low-level tritium monitor for aqueous effluents has explored several potential techniques. In one method, a water-immiscible liquid scintillation cocktail was ultrasonically mixed with an aqueous sample to form a water-cocktail dispersion for analysis by liquid scintillation spectrometry. The organic cocktail could then be reused after phase separation. Of the cocktails tested, a toluene-based cocktail showed the highest tritium detection efficiency (7%). In another technique, the sensitivity of various solid scintillators (plastic beads, crushed inorganic salts, etc.) to tritium in aqueous solutions was measured. The most efficient solid scintillator had a 2% tritium detection efficiency. In a third method, a large surface area detector was constructed from thin fibers of plastic scintillator. This detector had a 0.1% intrinsic tritium detection efficiency. While sensitivities of -25 kBq/L of tritium for a short count have been attained using several of these techniques, none can yet reach the environmental level of < 1 kBq/L in aqueous solutions.