ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Tatsuhiko Uda, Kenji Okuno, Yuji Naruse
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 436-441
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29784
Articles are hosted by Taylor and Francis Online.
To study application of laser Raman spectroscopy for fusion fuel gas analysis by an in situ method, methane (CH4) and tritium (T2) mixed gases were measured. In the mixed gases, hydrogen isotope exchange reactions were induced by beta decay, and various isotopic hydrogens and methanes were produced. Spectral peaks of v1 and v3 bands were detected individually for CH4 and four tritiated methanes. The v1 bands between 1700–1900 cm−1 were selected as suitable ones for quantitative analysis. After mixing T2 and CH4 gases, while large amounts of tritiated methanes were produced as time lapsed, the equilibrium state was not reached by the time 1000 h had passed. It was presumed that the isotope exchange reactions were very slow compared to mixed gases of just hydrogen isotopes.