ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Tatsuhiko Uda, Kenji Okuno, Yuji Naruse
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 436-441
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29784
Articles are hosted by Taylor and Francis Online.
To study application of laser Raman spectroscopy for fusion fuel gas analysis by an in situ method, methane (CH4) and tritium (T2) mixed gases were measured. In the mixed gases, hydrogen isotope exchange reactions were induced by beta decay, and various isotopic hydrogens and methanes were produced. Spectral peaks of v1 and v3 bands were detected individually for CH4 and four tritiated methanes. The v1 bands between 1700–1900 cm−1 were selected as suitable ones for quantitative analysis. After mixing T2 and CH4 gases, while large amounts of tritiated methanes were produced as time lapsed, the equilibrium state was not reached by the time 1000 h had passed. It was presumed that the isotope exchange reactions were very slow compared to mixed gases of just hydrogen isotopes.