ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J A Mason, G Vassallo
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 425-429
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29782
Articles are hosted by Taylor and Francis Online.
Calorimetry is a technique for measuring the thermal power of heat producing samples and it is widely used in a variety of measurement fields including chemical energy measurement, nuclear half-life determination and nuclear materials accounting and safeguards1, 2. The technique has specific application in measuring the heat produced by the radioactive decay of tritium bearing materials. This paper describes the design and proposed operation of a transportable isothermal tritium calorimeter for use as part of the measurement instrumentation of the JRC Ispra European Tritium Handling Experimental Laboratory (ETHEL). An instrument based on this design is currently under construction. The advantages of the use of the instrument are discussed as are the issues of safety, measurement accuracy, measurement time and ease of use. Data are presented from measurements of low power plutonium samples (which simulate tritium in a uranium bed) using a plutonium calorimeter based on similar design concepts. The measurements correspond to tritium quantities ranging from less than 1 kCi (37 TBq) up to greater than 100 kCi (3.7 PBq or 10 grams).