ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Kapulla, Hans Kraemer, Reinhard Heine, Rolf
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 412-418
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29780
Articles are hosted by Taylor and Francis Online.
In the past calorimetry has been developed as a powerful tool in radiometrology. Calorimetric methods have been applied for the determination of activities, half lives and mean energies released during the desintegration of radioactive isotopes. The fundamental factors and relations which determine the power output of radioactive samples are presented and some basic calorimeter principles are discussed. At the Kernforschungszentrum Karlsruhe (KfK) a family of 3 calorimeters has been developed to measure the energy release from radioactive waste products arising from reprocessing operations. With these calorimeters, radioactive samples with sizes from a few cm3 to 2·105 cm3 and heat ratings ranging from a few mW to kW can be measured. After modifications of its inner part the most sensitive calorimeter among the three calorimeters mentioned above would be best suited for measuring the tritium inventory in T-getters of the Amersham-type. Its new time constant and sensitivity is calculated with FE-methods.