ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kapulla, Hans Kraemer, Reinhard Heine, Rolf
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 412-418
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29780
Articles are hosted by Taylor and Francis Online.
In the past calorimetry has been developed as a powerful tool in radiometrology. Calorimetric methods have been applied for the determination of activities, half lives and mean energies released during the desintegration of radioactive isotopes. The fundamental factors and relations which determine the power output of radioactive samples are presented and some basic calorimeter principles are discussed. At the Kernforschungszentrum Karlsruhe (KfK) a family of 3 calorimeters has been developed to measure the energy release from radioactive waste products arising from reprocessing operations. With these calorimeters, radioactive samples with sizes from a few cm3 to 2·105 cm3 and heat ratings ranging from a few mW to kW can be measured. After modifications of its inner part the most sensitive calorimeter among the three calorimeters mentioned above would be best suited for measuring the tritium inventory in T-getters of the Amersham-type. Its new time constant and sensitivity is calculated with FE-methods.