ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. D. Simpson, J. K. Hoffer, L. R. Foreman
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 330-333
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29766
Articles are hosted by Taylor and Francis Online.
We have examined two of the variables that affect the beta-layering process in which nonuniform layers of solid deuterium-tritium (DT) are driven toward uniformity by beta-decay induced sublimation. For these experiments, a 9 mm diameter polycarbonate sphere was partially filled with a 50-50 mix of DT liquid, frozen, and then held at 17 K. We measured the equilibration time constant τ as functions of solid layer thickness, 4He exchange gas pressure, and age. Solid layer thicknesses ranged from 200 µm to 650 µm, exchange gas pressures from 0 to 600 torr, and age from 0 to 104 days. Results show a significant final solid layer anisotropy with exchange gas pressures above 5 torr, and τ values that increased with age by 0.01 min/day for 200 µm-thick layers, and by 0.5 min/day for 650 µm-thick layers. The time constant is shown to be a weak function of exchange gas pressure.