ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
John T. Gill, Daniel B. Hawkins, Clifford L. Renschler
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 325-329
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29765
Articles are hosted by Taylor and Francis Online.
Zeolite-based tritium lamps are a possible alternative to traditional tritium gas tube light sources. Rare earth luminescing centers may be ion-exchanged into zeolite matrices. Close proximity of tritium atoms to the rare earths can be provided by highly tritiated water sorbed within the pore structure of the zeolite aluminosilicate matrix. Zeolites are optically clear and radiation stable. Light outputs up to 2 W/cm2, with good stability, are shown here for tritiated water-loaded zeolites. Procedures for obtaining light sources are presented and results are discussed. The possible use of these luminescent materials as process monitors for the tritium content of zeolite absorption columns is also proposed.