ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
D.F. Mullins, J.P. Krasznai, D.A. Mueller
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 312-317
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29763
Articles are hosted by Taylor and Francis Online.
Tritium is a by-product in CANDU heavy water reactor operations and is the major contributor to internal dose for plant workers. The Darlington Tritium Removal Facility (DTRF) is decontaminating heavy water by removing tritium and storing it as a metal hydride. In view of the large tritium separation capacity, (24 MCi/a, 888 PBq/a) Ontario Hydro is interested in pursuing markets for the peaceful uses of tritium. One of these peaceful uses is in self-luminous lighting. The state of the art at present is a phosphor coated tube filled with tritium gas. However, safety considerations have restricted the use of these lights to outdoor or essential safety applications. Binding the tritium to a solid non-volatile matrix would increase the safety of tritium lights and allow the use of other phosphors, matrices and construction geometries. Solid, organic based tritium lights were produced using two different polymer matrices. While both these materials produced visible light, the intensity was low and radiolytic damage to the polymers was evident.