ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
C. T. Peng, P. C. Souers
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 307-311
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29762
Articles are hosted by Taylor and Francis Online.
Tritium incorporation by synthetic and non-synthetic methods shares the common mechanism of labeling, requiring the activation of tritium gas. Activation can be by catalysts, hot tungsten wire, microwave discharge, etc. and results in the formation of tritium atoms and ions. The tritium atoms and ions may form free or sorbed onto a surface to react with substrate yielding different isotopomers and by-products. A third mechanism of labeling is tunneling. Tunneling is significant at near absolute zero temperature with liquid and solid tritium and is also significant when high pressures of tritium gas are used for labeling. Other parameters relating to supports, catalysts, purity of tritium gas, chemical nature of substrates, can also affect labeling. Tritium NMR spectroscopy can determine the tritium distribution in a molecule to aid in interpreting the labeling mechanism. The non-synthetic methods have the potential of labeling complex molecules of biomedical interest that are inaccessible by synthetic methods.