ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. T. Peng, P. C. Souers
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 307-311
Safety; Measurement and Accountability; Operation and Maintenance; Application | doi.org/10.13182/FST92-A29762
Articles are hosted by Taylor and Francis Online.
Tritium incorporation by synthetic and non-synthetic methods shares the common mechanism of labeling, requiring the activation of tritium gas. Activation can be by catalysts, hot tungsten wire, microwave discharge, etc. and results in the formation of tritium atoms and ions. The tritium atoms and ions may form free or sorbed onto a surface to react with substrate yielding different isotopomers and by-products. A third mechanism of labeling is tunneling. Tunneling is significant at near absolute zero temperature with liquid and solid tritium and is also significant when high pressures of tritium gas are used for labeling. Other parameters relating to supports, catalysts, purity of tritium gas, chemical nature of substrates, can also affect labeling. Tritium NMR spectroscopy can determine the tritium distribution in a molecule to aid in interpreting the labeling mechanism. The non-synthetic methods have the potential of labeling complex molecules of biomedical interest that are inaccessible by synthetic methods.