ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S.K. Sood, C. Fong, K.M. Kalyanam, O.K. Kveton, A. Busigin, D.M. Ruthven
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 299-304
Tritium Processing | doi.org/10.13182/FST92-A29761
Articles are hosted by Taylor and Francis Online.
Pressure Swing Adsorption (PSA), which is a well established industrial process for separating and purifying industrial gases, is proposed for recovery of hydrogen isotopes from the ITER (International Thermonuclear Experimental Reactor) solid breeder He purge stream. The PSA process has an inherent advantage over a recently proposed Temperature Swing Adsorption (TSA) design because it allows much faster cycling (10 vs. 480 min.) and therefore has significantly (48 times) lower tritium inventory. The maximum tritium inventory for a 10 minute PSA cycle is less than 0.5 g of tritium, thus meeting an important safety goal of ITER. The PSA process is based on using molecular sieve 5A at 77 K, with pressure cycling from 1 – 2 MPa during the adsorption cycle, to a rough vacuum during regeneration. Experiments have been carried out to confirm the H2/He adsorption isotherms on molecular sieve 5A, and to develop new data points at low H2 partial pressures and a temperature of 77 K. A dynamic simulation model has been developed to facilitate system design and optimization. Simulation results indicate that a single-pass hydrogen isotope recovery of 50–80% is achievable, and that hydrogen purity of more than 99% is possible to obtain from the blanket purge stream containing only 0.1% total hydrogen in helium. Further experiments are underway to verify the dynamic simulation results and to investigate alternative adsorbent materials.