ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
W. Brian Clarke, Roland M. Clarke
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 170-175
Technical Notes on Cold Fusion | doi.org/10.13182/FST92-A29738
Articles are hosted by Taylor and Francis Online.
A search is described for 3He, 4He, and tritium produced when D2 is absorbed by titanium sponge, or released when titanium deuteride is heated. The D2 is prepared from pre-nuclear-era D2O, which has a tritium/deuterium (T/D) ratio of 1.8 × 10−15. Two reservoirs of titanium sponge in a vacuum system attached to the inlet line of a mass spectrometer are heated to allow rapid transfer of D2 from one sponge to the other. Significant amounts of 3He and 4He are released only after the deuterium content is increased to reach TiD1.5 in one sponge. Then 3He and 4He are decreased as the D2 is transferred back and forth. When the titanium is loaded to a composition of TiD2.0, 3He and 4He increase during the next two transfers, then decrease. When the D2 is replaced by H2, then D2-H2 (1:1), 3He and 4He decrease steadily, indicating that the transfer process causes partial release of 3He and 4He trapped in the titanium. This view is supported by the fact that all fractions appear to have a constant 3He/4He ratio of 3.0 × 10−7. We believe that this helium is introduced from the cover gas used during the manufacture of the titanium sponge and that it has nothing to do with cold fusion. Assuming that the appropriate time is the transfer time of ∼1 h, the following upper limits are calculated: 1.4 × 10−21 fusion/d-d · s−1 for d + d = 3He + n, and 2.0 × 10−15 fusion/d-d · s−1 for d + d = 4He. The limit for the 3He channel is in agreement with the value of 10−23 fusion/d-d · s−1. After a series of transfers, the D2 is sealed in a container made of low-helium-permeability glass. After a decay time of 1.5 yr, tritium is assayed by measurement of 3He. The T/D ratio is found to be 6.4 × 10−15, significantly higher than T/D in the D2O. At present, because the possibility of tritium contamination cannot be eliminated, the excess tritium is viewed as an upper limit f or production by cold fusion. Assuming that the appropriate time is the total transfer time of 16 h, an upper limit is obtained for d + d = t + p of 1.6 × 10−19 fusion/d-d · s−1. Assuming that the appropriate time is the time D2 was resident in either titanium sponge, 360 h, the upper limit is 7 × 10−21 fusion/d-d · s−1. These limits are not in agreement with a rate of ∼10−14 fusion/d-d · s−1.