ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kozo Yamazaki, Osamu Motojima, Makoto Asao
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 147-160
Technical Paper | Experimental Device | doi.org/10.13182/FST92-A29734
Articles are hosted by Taylor and Francis Online.
Optimization studies have been carried out for the proposed Large Helical Device, which has a major radius of ∼4 m and a magnetic field of ∼4 T, in which a key experiment is to demonstrate a divertor concept. These studies clarified that configurations with a higher helical coil pitch parameter γc (γc ≳ 1.25) and a larger plasma minor radius are not consistent with the requirement of a clean divertor configuration. More compact, lower m systems (m ≲ 8) without helical coil pitch modulation are ruled out by the equilibrium beta limit of the plasma and the stability limit of the superconducting coil current because of the higher maximum magnetic field strength. Systems with a larger aspect ratio and larger m (m ≳ 12, γc ∼ 1.2 to 1.3) with better neoclassical confinement properties are not effective because of a lower stability beta and a narrower clearance between the divertor layer and the wall. An l = 2/m = 10/γc = 1.2 superconducting system is found to be an optimized high-nτT configuration for 4 m/4 T next-generation experiments with respect to the high-beta requirement, clean divertor installation, superconducting coil engineering, and cost optimization.