ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Kozo Yamazaki, Osamu Motojima, Makoto Asao
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 147-160
Technical Paper | Experimental Device | doi.org/10.13182/FST92-A29734
Articles are hosted by Taylor and Francis Online.
Optimization studies have been carried out for the proposed Large Helical Device, which has a major radius of ∼4 m and a magnetic field of ∼4 T, in which a key experiment is to demonstrate a divertor concept. These studies clarified that configurations with a higher helical coil pitch parameter γc (γc ≳ 1.25) and a larger plasma minor radius are not consistent with the requirement of a clean divertor configuration. More compact, lower m systems (m ≲ 8) without helical coil pitch modulation are ruled out by the equilibrium beta limit of the plasma and the stability limit of the superconducting coil current because of the higher maximum magnetic field strength. Systems with a larger aspect ratio and larger m (m ≳ 12, γc ∼ 1.2 to 1.3) with better neoclassical confinement properties are not effective because of a lower stability beta and a narrower clearance between the divertor layer and the wall. An l = 2/m = 10/γc = 1.2 superconducting system is found to be an optimized high-nτT configuration for 4 m/4 T next-generation experiments with respect to the high-beta requirement, clean divertor installation, superconducting coil engineering, and cost optimization.