ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Kozo Yamazaki, Osamu Motojima, Makoto Asao
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 147-160
Technical Paper | Experimental Device | doi.org/10.13182/FST92-A29734
Articles are hosted by Taylor and Francis Online.
Optimization studies have been carried out for the proposed Large Helical Device, which has a major radius of ∼4 m and a magnetic field of ∼4 T, in which a key experiment is to demonstrate a divertor concept. These studies clarified that configurations with a higher helical coil pitch parameter γc (γc ≳ 1.25) and a larger plasma minor radius are not consistent with the requirement of a clean divertor configuration. More compact, lower m systems (m ≲ 8) without helical coil pitch modulation are ruled out by the equilibrium beta limit of the plasma and the stability limit of the superconducting coil current because of the higher maximum magnetic field strength. Systems with a larger aspect ratio and larger m (m ≳ 12, γc ∼ 1.2 to 1.3) with better neoclassical confinement properties are not effective because of a lower stability beta and a narrower clearance between the divertor layer and the wall. An l = 2/m = 10/γc = 1.2 superconducting system is found to be an optimized high-nτT configuration for 4 m/4 T next-generation experiments with respect to the high-beta requirement, clean divertor installation, superconducting coil engineering, and cost optimization.