ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
V. A. Burtsev, V. M. Kozhevin, V. N. Litunovsky, A. A. Drozdov, N. A. Viknyanshchuk, I. B. Ovchinnikov, A. E. Soldatov
Fusion Science and Technology | Volume 21 | Number 4 | July 1992 | Pages 2332-2345
Technical Paper | Special Issue on D-He Fusion / D-3He/Fusion Reactor | doi.org/10.13182/FST92-A29726
Articles are hosted by Taylor and Francis Online.
The PULSATOR concept for the formation of a quasi-stationary magnetoplasma field-reversed configuration (FRC) by means of cyclic injection and merging of toroids in the confinement chamber is analyzed. The possible use of quasi-stationary plasma accelerators for the formation of high-〈β〉 toroids is considered. The requirements for the formation of FRCs with fusion parameters are evaluated. The possibility of the existence of an FRC with a finite toroidal field value is shown. The SAPFIR experimental installation for FRC formation investigations is briefly described, and the results of preliminary experiments are given.