ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Winfried Kernbichler
Fusion Science and Technology | Volume 21 | Number 4 | July 1992 | Pages 2297-2306
Technical Paper | Special Issue on D-He Fusion / D-3He/Fusion Reactor | doi.org/10.13182/FST92-A29723
Articles are hosted by Taylor and Francis Online.
The intrinsic potential of a field-reversed configuration (FRC) for high-beta operation (beta values in the range of 50 to 100%) stimulates much interest in this device as an attractive candidate for a compact fusion reactor with high power density. Several additional benefits, e.g., the cylindrical geometry of the concept, the simplicity of the magnetic system, the simply connected plasma, the low synchrotron radiation, the divertor action of the open field lines, and the possibility for direct energy conversion of the charged-particle flow, justify a closer look at the benefits and problems of FRCs. The emphasis here is on operation with D-3He fuel under reactor-relevant conditions, whereas deuterium-tritium (D-T) is taken as a reference case. The reasons for that choice are that (a) D-3He offers intrinsic advantages over D-T in neutron production and radioactive inventory and (b) the high-beta regime of an FRC matches ideally some of the requirements for D-3He operation. A steady-state version of an FRC is considered to be more attractive than its pulsed counterpart. Frequent startup to high temperatures would be particularly detrimental for D-3He, where startup scenarios seem to rely either on the transition from D-T to D-3He, with unavoidable strong tritium contamination, or on high-power neutral beam injection.