ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Winfried Kernbichler
Fusion Science and Technology | Volume 21 | Number 4 | July 1992 | Pages 2297-2306
Technical Paper | Special Issue on D-He Fusion / D-3He/Fusion Reactor | doi.org/10.13182/FST92-A29723
Articles are hosted by Taylor and Francis Online.
The intrinsic potential of a field-reversed configuration (FRC) for high-beta operation (beta values in the range of 50 to 100%) stimulates much interest in this device as an attractive candidate for a compact fusion reactor with high power density. Several additional benefits, e.g., the cylindrical geometry of the concept, the simplicity of the magnetic system, the simply connected plasma, the low synchrotron radiation, the divertor action of the open field lines, and the possibility for direct energy conversion of the charged-particle flow, justify a closer look at the benefits and problems of FRCs. The emphasis here is on operation with D-3He fuel under reactor-relevant conditions, whereas deuterium-tritium (D-T) is taken as a reference case. The reasons for that choice are that (a) D-3He offers intrinsic advantages over D-T in neutron production and radioactive inventory and (b) the high-beta regime of an FRC matches ideally some of the requirements for D-3He operation. A steady-state version of an FRC is considered to be more attractive than its pulsed counterpart. Frequent startup to high temperatures would be particularly detrimental for D-3He, where startup scenarios seem to rely either on the transition from D-T to D-3He, with unavoidable strong tritium contamination, or on high-power neutral beam injection.