ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
G. L. Kulcinski, James P. Blanchard, Laila A. El-Guebaly, Gilbert A. Emmert, Hesham Y. Khater, Charles W. Maynard, E. A. Mogahed, John F. Santarius, Mohamed E. Sawan, I. N. Sviatoslavsky, L. J. Wittenberg
Fusion Science and Technology | Volume 21 | Number 4 | July 1992 | Pages 2292-2296
Technical Paper | Special Issue on D-He Fusion / D-3He/Fusion Reactor | doi.org/10.13182/FST92-A29722
Articles are hosted by Taylor and Francis Online.
The key features of Apollo, a conceptual D-3He tokamak reactor for commercial electricity production, are summarized. The 1000-MW(electric) design utilizes direct conversion of synchrotron radiation power and thermal conversion of transport, neutron, and bremsstrahlung radiation power. The direct conversion method uses rectennas, and the thermal conversion cycle uses an organic coolant. Apollo operates in the first-stability regime, with a major radius of 7.89 m, a peak magnetic field on the toroidal field coils of 19.3 T, a 53-MA plasma current, and a 6.7% beta value. The low neutron production of the D-3He fuel cycle greatly reduces the radiation damage rate and allows a full-lifetime first wall and structure made of standard steels with only slight modifications to reduce activation levels. The reduced radioactive inventory and afterheat give significant safety and environmental advantages over deuterium-tritium reactors.