ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Gilbert A. Emmert, Ronald Parker
Fusion Science and Technology | Volume 21 | Number 4 | July 1992 | Pages 2284-2291
Technical Paper | Special Issue on D-He Fusion / D-3He/Fusion Reactor | doi.org/10.13182/FST92-A29721
Articles are hosted by Taylor and Francis Online.
The potential for D-3He experiments in the proposed Compact Ignition Tokamak (CIT) and International Thermonuclear Experimental Reactor (ITER) tokamak test devices is examined. In CIT, an energy multiplication Q of ∼0.3 can be obtained with an injection power of ∼100 MW. Without modifications to ITER, except for the change of fuel, it is found that Q of the order of 0.3 to 0.5 can be obtained. Breakeven with D-3He requires modification to the device to increase the elongation to 2.4, reduce the major radius to 5.6 m, and increase the magnetic field at the plasma from 4.9 to 5.6 T. Operation with a small amount of tritium seeding can reduce the auxiliary power required to achieve breakeven and leads to Q = 2 in an unmodified device.