ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Gilbert A. Emmert, Ronald Parker
Fusion Science and Technology | Volume 21 | Number 4 | July 1992 | Pages 2284-2291
Technical Paper | Special Issue on D-He Fusion / D-3He/Fusion Reactor | doi.org/10.13182/FST92-A29721
Articles are hosted by Taylor and Francis Online.
The potential for D-3He experiments in the proposed Compact Ignition Tokamak (CIT) and International Thermonuclear Experimental Reactor (ITER) tokamak test devices is examined. In CIT, an energy multiplication Q of ∼0.3 can be obtained with an injection power of ∼100 MW. Without modifications to ITER, except for the change of fuel, it is found that Q of the order of 0.3 to 0.5 can be obtained. Breakeven with D-3He requires modification to the device to increase the elongation to 2.4, reduce the major radius to 5.6 m, and increase the magnetic field at the plasma from 4.9 to 5.6 T. Operation with a small amount of tritium seeding can reduce the auxiliary power required to achieve breakeven and leads to Q = 2 in an unmodified device.