ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Osamu Mitarai, Hiroki Hasuyama, Yoshihisa Wakuta
Fusion Science and Technology | Volume 21 | Number 4 | July 1992 | Pages 2265-2283
Technical Paper | Special Issue on D-He Fusion / D-3He/Fusion Reactor | doi.org/10.13182/FST92-A29720
Articles are hosted by Taylor and Francis Online.
Ignition characteristics in deuterium-tritium (D-T) and D-3He tokamak reactors with spin-polarized fuels are presented by using the ignition access condition based on the generalized saddle point in the representation of . Enhancement of the D-T fusion cross section due to parallel spin polarization with respect to the magnetic field can reduce the confinement enhancement factor required for reaching ignition by ∼20% if fusion particle loss is not induced by the anisotropic fusion particle distribution. Spin polarization is thus effective when a D-T reactor is marginal for ignition. In D-3He fusion, it is more advantageous to use spin-polarized fuel in the heating phase than in the case of D-T fusion. The ignition toroidal beta value can be reduced by spin polarization from 12 ± 0.8 to 5.3 ± 0.5% in D-3He = 2:1 plasma and from 17 ± 0.5 to 6.5 ± 0.2% in D-3He = 1:1 plasma. The auxiliary heating power to reach ignition, which is rather large for D-3He fusion, can be reduced by a factor of 2 to 3 compared with the unpolarized case. For example, in the D-3He Tokamak Reactor, 350 MW of auxiliary heating power for D:3He = 2:1 and Ti(0)/Te(0) = 1 without spin polarization can be reduced to 190 MW with complete polarization of the deuterium and 3He ions. The deuterium-deuterium fusion suppression effect, if it exists, does not alter the ignition condition much. Various problems related to the spin polarization scheme are also discussed.