ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
G. L. Kulcinski, Harrison H. (Jack) Schmitt
Fusion Science and Technology | Volume 21 | Number 4 | July 1992 | Pages 2221-2229
Technical Paper | Special Issue on D-He Fusion / D-3He/Fusion Reactor | doi.org/10.13182/FST92-A29717
Articles are hosted by Taylor and Francis Online.
The moon contains an enormous energy source in 3He deposited by the solar wind. Fusion of only 100 kg of 3He with deuterium in thermonuclear fusion power plants can produce > 1000 MW(electric) of electrical energy, and the lunar resource base is estimated at 1 × 109 kg of 3He. This fuel can supply > 1000 yr of terrestrial electrical energy demand. The methods for extracting this fuel and the other solar wind volatiles are described. Alternate uses of D-3He fusion in direct thrust rockets will enable more ambitious deep-space missions to be conducted. The capability of extracting hydrogen, water, nitrogen, and other carbon-containing molecules will open up the moon to a much greater level of human settlement than previously thought.