ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Han S. Uhm, W. M. Lee
Fusion Science and Technology | Volume 21 | Number 1 | January 1992 | Pages 75-81
Technical Note on Cold Fusion | doi.org/10.13182/FST92-A29707
Articles are hosted by Taylor and Francis Online.
Based on theoretical calculations, new schemes to increase the deuterium density in palladium over its initial value are presented. A high deuterium concentration in palladium is needed for application to solid-state fusion. The first deuterium enrichment scheme makes use of plasma ion implantation, which consists of a cylindrical palladium rod (target) preloaded with deuterium atoms, coated with diffusion barrier material, and immersed in a deuterium plasma. The palladium rod is connected to a high-power modulator, which provides a series of negative voltage pulses. During these negative pulses, deuterium ions fall on the target, penetrate the diffusion barrier, and are implanted inside the palladium. For reasonable system parameters allowed by current technology, theoretical calculations indicate that the saturation deuterium density after prolonged ion implantation can be several times the palladium atomic number density. The second deuterium enrichment scheme makes use of temperature gradient effects on the deuterium solubility in palladium. A heat source at temperature T2 and a heat sink at temperature T1 (where T2 > T1) are in contact with two different parts of a palladium sample, which has been presoaked with deuterium atoms and has been coated with diffusion barrier material or has been securely locked in a metal case. The temperature gradient created in the sample from such an arrangement forces the deuterium atoms in the hot region to migrate into the cold region, resulting in higher deuterium density in the cold region.