ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Han S. Uhm, W. M. Lee
Fusion Science and Technology | Volume 21 | Number 1 | January 1992 | Pages 75-81
Technical Note on Cold Fusion | doi.org/10.13182/FST92-A29707
Articles are hosted by Taylor and Francis Online.
Based on theoretical calculations, new schemes to increase the deuterium density in palladium over its initial value are presented. A high deuterium concentration in palladium is needed for application to solid-state fusion. The first deuterium enrichment scheme makes use of plasma ion implantation, which consists of a cylindrical palladium rod (target) preloaded with deuterium atoms, coated with diffusion barrier material, and immersed in a deuterium plasma. The palladium rod is connected to a high-power modulator, which provides a series of negative voltage pulses. During these negative pulses, deuterium ions fall on the target, penetrate the diffusion barrier, and are implanted inside the palladium. For reasonable system parameters allowed by current technology, theoretical calculations indicate that the saturation deuterium density after prolonged ion implantation can be several times the palladium atomic number density. The second deuterium enrichment scheme makes use of temperature gradient effects on the deuterium solubility in palladium. A heat source at temperature T2 and a heat sink at temperature T1 (where T2 > T1) are in contact with two different parts of a palladium sample, which has been presoaked with deuterium atoms and has been coated with diffusion barrier material or has been securely locked in a metal case. The temperature gradient created in the sample from such an arrangement forces the deuterium atoms in the hot region to migrate into the cold region, resulting in higher deuterium density in the cold region.