ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Chungpin Liao, Brian Labombard, Barton Lane, Mujid S. Kazimi
Fusion Science and Technology | Volume 21 | Number 1 | January 1992 | Pages 41-51
Technical Paper | Divertor System | doi.org/10.13182/FST92-A29704
Articles are hosted by Taylor and Francis Online.
It is widely recognized that results from divertor models can be quite sensitive to the boundary conditions that are assumed at the divertor neutralizer plate. However, some past models assumed electron and ion heat transmission coefficients with little justification. In fact, energy and momentum fluxes from backscattered neutral deuterium and tritium atoms can significantly contribute to the energy and momentum balance of the divertor plasma and consequently affect the estimates of steady-state plasma conditions. In illustration of this point, a two-point model similar to that of Galambos and Peng is rederived, including momentum and energy sources from charge-exchange and a self-consistent fluid treatment of the sheath heat transmission coefficients. Divertor conditions associated with the International Tokamak Reactor (INTOR) and International Thermonuclear Experimental Reactor (ITER)-like fusion reactors are estimated, and the effects of including the backscattered fluxes are discussed.