ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
D. W. Swain, M. D. Carter, J. R. Wilson, P. M. Ryan, J. B. Wilgen, J. Hosea, A. Rosenberg
Fusion Science and Technology | Volume 43 | Number 4 | June 2003 | Pages 503-513
Technical Paper | doi.org/10.13182/FST03-A297
Articles are hosted by Taylor and Francis Online.
The ion cyclotron heating and current drive system on the National Spherical Torus Experiment (NSTX) has delivered over 3 MW reliably for pulse lengths over 100 ms with various phasings of the antennas. A circuit model of the system that includes the 12 coupled antennas and six radio-frequency sources has been developed that gives good agreement with vacuum measurements. When it is used to experimentally determine the S-matrix of the system under different plasma conditions, pronounced asymmetries in the off-diagonal values of the S-matrix are seen. The S-matrix in the presence of plasma has been calculated with the RANT3D code using measured edge density profiles in front of the antenna; these agree remarkably well with the measurements. The asymmetry is caused primarily by the large pitch angle of the magnetic field in front of the antenna, coupled with the gradients in the plasma edge.