ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Herbert Daniel
Fusion Science and Technology | Volume 20 | Number 2 | September 1991 | Pages 222-224
Technical Note | Fusion Reactor | doi.org/10.13182/FST91-A29692
Articles are hosted by Taylor and Francis Online.
A muon-catalyzed fusion (µCF) reactor uses the negative muon to catalyze deuteron-triton (d-t) fusion via dµt molecules. The novel reactor whose concept is outlined works with the deuterium-tritium (D-T) mixture in a single volume within a magnetic bottle. This volume serves simultaneously for pion production, pion decay into muons, muon stopping, d-t fusion, and muon reactivation. The pions are produced by proton bombardment of the D-T. The muon reactivation is done by stripping off the muons from muonic alpha particles by continuously moving the muonic alpha particles in cyclotron resonance. The protons for pion production are injected through a hole in the bottle and are kept moving in cyclotron resonance as well. Energy is supplied to the protons and muonic alpha particles in the bottle by a rotating electric field of constant amplitude. Some details of the phase-space behavior of the moving protons and muonic alpha particles are given. An optimistic estimate leads to a net cost of W = 3 GeV per negative muon and an energy yield of Y = 50 GeV per negative muon, both energies in the form of heat.