ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Herbert Daniel
Fusion Science and Technology | Volume 20 | Number 2 | September 1991 | Pages 222-224
Technical Note | Fusion Reactor | doi.org/10.13182/FST91-A29692
Articles are hosted by Taylor and Francis Online.
A muon-catalyzed fusion (µCF) reactor uses the negative muon to catalyze deuteron-triton (d-t) fusion via dµt molecules. The novel reactor whose concept is outlined works with the deuterium-tritium (D-T) mixture in a single volume within a magnetic bottle. This volume serves simultaneously for pion production, pion decay into muons, muon stopping, d-t fusion, and muon reactivation. The pions are produced by proton bombardment of the D-T. The muon reactivation is done by stripping off the muons from muonic alpha particles by continuously moving the muonic alpha particles in cyclotron resonance. The protons for pion production are injected through a hole in the bottle and are kept moving in cyclotron resonance as well. Energy is supplied to the protons and muonic alpha particles in the bottle by a rotating electric field of constant amplitude. Some details of the phase-space behavior of the moving protons and muonic alpha particles are given. An optimistic estimate leads to a net cost of W = 3 GeV per negative muon and an energy yield of Y = 50 GeV per negative muon, both energies in the form of heat.